2002
DOI: 10.5802/jtnb.351
|View full text |Cite
|
Sign up to set email alerts
|

A fast algorithm for polynomial factorization over $\mathbb {Q}_p$

Abstract: L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
20
0
2

Year Published

2004
2004
2024
2024

Publication Types

Select...
4
4

Relationship

2
6

Authors

Journals

citations
Cited by 27 publications
(22 citation statements)
references
References 1 publication
0
20
0
2
Order By: Relevance
“…• The improved Round Four algorithm by Ford et al (2000) is considerably faster than the original Round Four algorithm. Formulated as an algorithm for factoring a polynomial Φ(x) over Q p , it returns a local integral basis (in fact, a power basis) for…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…• The improved Round Four algorithm by Ford et al (2000) is considerably faster than the original Round Four algorithm. Formulated as an algorithm for factoring a polynomial Φ(x) over Q p , it returns a local integral basis (in fact, a power basis) for…”
Section: Introductionmentioning
confidence: 99%
“…The following result from Ford and Letard (1994) (also see Ford et al, 2000) provides a method for approximating the greatest common divisor to a given precision.…”
Section: Reducibilitymentioning
confidence: 99%
“…There are several efficient methods for this problem, most of them based on variants of the Round 2 and Round 4 routines [15], [16], [3], [4], [1], [5].…”
Section: Introductionmentioning
confidence: 99%
“…Different authors (Cohen, 2000;Ford et al, 2002) have provided such benchmarks for different problems in computational algebraic number theory. These lists of polynomials have been of great use, but the new algorithms and the fast evolution of hardware have left it out of date.…”
Section: Appendix Families Of Test Polynomialsmentioning
confidence: 99%