The article discusses mathematical and numerical methods for modeling magnetostrictive multielectronic systems based on a combination of quantum and classical methods. The algorithm development suitable for the investigation of magnetostrictive phenomena at the micro level using the classical-quantum method implemented on a modern classical computer is justified. The algorithms and structure of the software package are given. The adequacy of the quantum-classical method is verified by comparing the calculated results of the properties of known magnetostrictive materials with the real properties of magnetostrictive alloys.