Most of the cereal-based ingredients used in poultry feed are contaminated with ochratoxin-A (OTA). We have investigated H-β zeolite (HBZ) as a new OTA binder for poultry, along with widely used clay mineral-based product (CM), using in vitro and in vivo methods. In vitro binding experiment was carried out using a biphasic assay, consisting of adsorption at pH 3.2 and desorption at pH 6.8. High adsorption (>98%) with less desorption (<5%) was observed for HBZ, whereas CM showed high binding (>98%) and moderate desorption (48%). In the in vitro experiments with the different simulated gastro-intestinal pH buffers, HBZ did not desorb OTA at any of the pH. Desorption of OTA was observed with CM, as the pH increases. From the in vitro kinetic and chemisorption studies, faster, stronger, and higher adsorption was observed for HBZ. Thermodynamic studies showed positive entropy (22.76 KJ/mol K) for HBZ, signifying predominant hydrophobic interactions towards OTA, whereas CM exhibited negative entropy (–3.67 KJ/mol K). The in vivo binding efficacy of HBZ and CM was tested in 5-wk-old broiler chickens. The study consisted of 4 experimental groups, each with 6 replicates having 2 birds per replicate. The groups were control, negative control (no toxin binder), T1 (HBZ at 1 kg/ton of feed), and T2(CM at 1 kg/ton of feed). Except control, all the replicates received 20 µg of OTA in the feed. Excreta samples of T1, T2, and NC contained 11.57, 7.16, and 2.78 µg of OTA respectively, which was significantly different from each other (
P
< 0.05). A growth performance trial was conducted in broiler chickens for 35 D. A total of 288 one-day-old birds were randomly segregated to 3 treatment groups, each with 8 replicates of 12 birds each. Treatment groups consisted of control, T1, and T2, treated with no toxin binder, HBZ, and CM at 1 kg/ton of feed, respectively. None of the treatment groups including control, affected BW gain, and feed conversion ratio (
P
> 0.05).