Ο κατηγοριοποιητής κ εγγύτερων γειτόνων είναι ένας αποτελεσματικός αλγόριθμος κατηγοριοποίησης. Ωστόσο, περιλαμβάνει μειονεκτήματα και αδυναμίες που τον καθιστούν ακατάλληλο σε συγκεκριμένα πεδία εφαρμογής ή/και σύνολα δεδομένων. Το πρώτο μειονέκτημα είναι το υψηλό κόστος κατηγοριοποίησης ως αποτέλεσμα του υπολογισμού των αποστάσεων μεταξύ κάθε αντικείμενου προς κατηγοριοποίηση και όλων των αντικειμένων που ανήκουν στο σύνολο εκπαίδευσης. Αν και τα σημερινά υπολογιστικά συστήματα είναι εφοδιασμένα με ισχυρούς επεξεργαστές, σε περιπτώσεις μεγάλων συνόλων δεδομένων, το συγκεκριμένο μειονέκτημα καθιστά την κατηγοριοποίηση μια ιδιαίτερα χρονοβόρα διαδικασία, η εκτέλεση της οποίας μπορεί να είναι απαγορευτική. Το δεύτερο μειονέκτημα αφορά τις μεγάλες απαιτήσεις σε αποθηκευτικό χώρο. Κατηγοριοποιητές που βασίζονται σε μοντέλα κατηγοριοποίησης (π.χ., δένδρα απόφασης, νευρωνικά δίκτυα) μπορούν μετά την κατασκευή του μοντέλου να διαγράψουν τα δεδομένα εκπαίδευσης ώστε να εξοικονομήσουν χώρο. Αντίθετα, ο κατηγοριοποιητής κ εγγύτερων γειτόνων πρέπει να έχει πάντα όλα τα δεδομένα εκπαίδευσης διαθέσιμα. Έτσι δεν είναι δυνατή η εξοικονόμηση αποθηκευτικού χώρου. Τέλος, η ακρίβεια που επιτυγχάνει ο κατηγοριοποιητής κ εγγύτερων γειτόνων εξαρτάται από την ποιότητα των δεδομένων εκπαίδευσης. Δεδομένα με θόρυβο, αντικείμενα χωρίς ετικέτα κλάσης, ακραία σημεία και επικαλύψεις στις περιοχές διαφορετικών κλάσεων αποπροσανατολίζουν τον κατηγοριοποιητή με αποτέλεσμα τη μείωση της ακρίβειας.Τα μειονεκτήματα αυτά αποτελούν μια ενεργή περιοχή έρευνας. Η διδακτορική διατριβή έχει ως κίνητρο την αντιμετώπιση των συγκεκριμένων μειονεκτημάτων. Ως εκ τούτου, η διατριβή συνεισφέρει καινοτόμους αλγόριθμους που αντιμετωπίζουν με αποτελεσματικό τρόπο τα μειονεκτήματα αυτά. Με άλλα λόγια, η διατριβή προτείνει αλγόριθμους και τεχνικές αποτελεσματικής κατηγοριοποίησης εγγύτερων γειτόνων. Η συνεισφορά έχει χωριστεί σε τρεις κατηγορίες: (i) νέες τεχνικές μείωσης όγκου των δεδομένων εκπαίδευσης που αντιμετωπίζουν όλα τα μειονεκτήματα και δεν παρουσιάζουν τις αδυναμίες υπαρχουσών τεχνικών, (ii) υβριδικούς αλγορίθμους που συνδυάζουν διαφορετικού τύπου μεθόδους επιτάχυνσης με στόχο την μείωση του υπολογιστικού κόστους της κατηγοριοποίησης (iii) βελτιώσεις σε υπάρχουσες τεχνικές και πειραματικές μελέτες.Η απόδοση των προτεινόμενων αλγόριθμων, τεχνικών και βελτιώσεων ελέγχθηκε πειραματικά και συγκρίθηκε με γνωστές στη βιβλιογραφία μεθόδους χρησιμοποιώντας διάφορα σύνολα δεδομένων. Οι πειραματικές μετρήσεις επικυρώθηκαν με το μη παραμετρικό στατιστικό τεστ του Wilcoxon. Τα αποτελέσματα υποδεικνύουν ότι οι αλγόριθμοι, οι τεχνικές και οι βελτιώσεις επιτυγχάνουν τον σκοπό για τον οποίο αναπτύχθηκαν και ότι οδηγούν σε αποτελεσματική κατηγοριοποίηση σε ότι αφορά την ακρίβεια, το κόστος κατηγοριοποίησης και το κόστος προ-επεξεργασίας.