As a new coding standard, Versatile Video Coding (VVC) introduces the quad-tree plus multi-type tree (QTMT) partition structure, which significantly improves coding efficiency compared to High-Efficiency Video Coding (HEVC). The QTMT partition structure further enhances the flexibility of coding unit (CU) partitioning and improves the efficiency of VVC encoding high-resolution video, but introduces an unacceptable coding complexity at the same time. This paper proposes an SVM-based fast CU partition decision algorithm to reduce the coding complexity for VVC. First, the proportion of split modes with different CU sizes is analyzed to explore a method to effectively reduce coding complexity. Then, more reliable correlation features are selected based on the maximum ratio of the standard deviation (SD) and the edge point ratio (EPR) in sub-CUs. Finally, two SVM models are designed and trained using the selected features to provide guidance for deciding whether to divide and the direction of partition. The simulation results indicate that the proposed algorithm can save 54.05% coding time on average with 1.54% BDBR increase compared with VTM7.0.