IFIP the International Federation for Information Processing
DOI: 10.1007/978-0-387-74161-1_23
|View full text |Cite
|
Sign up to set email alerts
|

A fast parallel algorithm for frequent itemsets mining

Abstract: Mining frequent itemsets from leirge databases is an important computational task with a lot of applications. The most known among them is the market-basket problem which assumes that we have a large number of items and we want to know which items are bought together. A recent application is that of web pages (baskets) and linked pages (items). Pages with many common references may be about the same topic. In this paper we present a parallel algorithm for mining frequent itemsets. We provide experimental evide… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?