Aircraft systems are becoming more and more complex, as they are required to perform multiple functions. For example, smart systems need to be able to self-monitor their working parameters, in order to infer their health status. All these additional functions require the system to acquire a multitude of measurements; albeit sometimes it is possible to implement virtual sensor techniques, dedicate sensing hardware is usually needed. As a main drawback, the installation of the needed sensors adds up to the total complexity, weight, cost and failure rate of the system. In this context, minimally invasive sensors can be used to measure the system parameters with high spatial resolution and minimal added complexity. One key technology in this field is the Fiber Bragg Gratings (FBG) optical sensors, used to perform strain and temperature measurements. This work describes an experimental campaign intended to assess and validate several installation techniques for FBGs as strain sensors. Two test benches were developed for different measurement setups. One is intended for creep and repeatability tests of a FBG sensor glued at both ends; the other was used to compare point gluing and continuous gluing techniques on an aluminium beam subject to a bending load. Results are compared with numerical simulations of the structure and measurements performed with traditional strain gages.