We present a method of memory footprint reduction for FFT-based, electromagnetic (EM) volume integral equation (VIE) formulations. The arising Green's function tensors have low multilinear rank, which allows Tucker decomposition to be employed for their compression, thereby greatly reducing the required memory storage for numerical simulations. Consequently, the compressed components are able to fit inside a graphical processing unit (GPU) on which highly parallelized computations can vastly accelerate the iterative solution of the arising linear system. In addition, the element-wise products throughout the iterative solver's process require additional flops, thus, we provide a variety of novel and efficient methods that maintain the linear complexity of the classic element-wise product with an additional multiplicative small constant. We demonstrate the utility of our approach via its application to VIE simulations for the Magnetic Resonance Imaging (MRI) of a human head. For these simulations we report an order of magnitude acceleration over standard techniques.Index terms-Canonical polyadic model, higher order singular value decomposition, Tucker decomposition, volume integral equations.