“…Literature is full of studies focused on utilizing ML to enhance maintenance task efficiency and effectiveness for different types of equipment such as aerospace (Adhikari et al, 2018;Deng, 2020), industrial systems (Askari et al, 2023;Vita et al, 2020;Martin-del-Campo and Sandin, 2017), air conditioning (Chen et al, 2022), healthcare (Shamayleh et al, 2020) and energy (Yan et al, 2017;M arquez et al, 2019a). These studies focused on either fault detection (Abela et al, 2022;Chen et al, 2022;Awad et al, 2017;Anis, 2018;Glowacz et al, 2017;Cerrada et al, 2022;Pichler et al, 2016;Jiang et al, 2023;Askari et al, 2023;Abid et al, 2022), or failure classifying (Lei et al, 2008;Poto cnik and Govekar, 2017;Toma et al, 2020;Schneider et al, 2017), or PdM to predict remaining useful life (RUL) (Deng, 2020;Hu et al, 2012;Deutsch and He, 2018). Regardless of the use case, ML models require single or several data streams generated from real-time or offline monitoring of the system.…”