The improvement of information sciences promotes the utilization of data for process monitoring. As the core of modern automation, time-stamped signals are used to estimate the system state and construct the data-driven model. Many recent studies claimed that the effectiveness of data-driven methods relies greatly on data quality. Considering the complexity of the operating environment, process data will inevitably be affected. This poses big challenges to estimating faults from data and delivers feasible strategies for electrical systems of industry. This paper addresses the missing data problem commonly in traction systems by designing a martingale posterior-based data generation method for the state-space model. Then, a data-driven approach is proposed for fault detection and estimation via the subspace identification technique. It is a general scheme using the Bayesian framework, in which the Dirichlet process plays a crucial role. The data-driven method is applied to a pilot-scale traction motor platform. Experimental results show that the method has good estimation performance.