Defect recognition in ballastless track structures, based on distributed acoustic sensors (DASs), was researched in order to improve detection efficiency and ensure the safe operation of trains on high-speed railways. A line in southern China was selected, and equipment was installed and debugged to collect the signals of trains and events along it. Track vibration signals were extracted by identifying a train track, denoising, framing and labeling to build a defect dataset. Time–frequency-domain statistical features, wavelet packet energy spectra and the MFCCs of vibration signals were extracted to form a multi-dimensional vector. An XGBoost model was trained and its accuracy reached 89.34%. A time-domain residual network (ResNet) that would expand the receptive field and test the accuracies obtained from convolution kernels of different sizes was proposed, and its accuracy reached 94.82%. In conclusion, both methods showed a good performance with the built dataset. Additionally, the ResNet delivered more effective detection of DAS signals compared to conventional feature engineering methods.