This study reports the development of a fiber-reinforced alkali-activated binder (FRAAB) with an emphasis on the performance and the durability of the fibers in the alkaline alkali-activated binder (AAB)-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali-activated with a mixture of sodium hydroxide (2-10 mol/L) and an aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1) at ambient temperature. For the reinforcement of the matrix integral fibers of alkali-resistant glass (AR-glass), E-glass, basalt, and carbon with a fiber volume content of 0.5% were used. By the integration of these short fibers, the three-point bending tensile strength of the AAB increased strikingly from 4.6 MPa (no fibers) up to 5.7 MPa (carbon) after one day. As a result of the investigations of the alkali resistance, the ARglass and the carbon fibers showed the highest durability of all fibers in the FRAAB-matrix. In contrast to that, the weight loss of E-glass and basalt fibers was significant under the alkaline condition. According to these results, only the AR-glass and the carbon fibers reveal sufficient durability in the alkaline AAB-matrix.