Since wound dressing has been considered a promising strategy to improve wound healing, recent attention has been focused on the development of modern wound dressings based on synthetic and bioactive polymers. In this study, we prepared a multifunctional wound dressing based on carboxymethyl chitosan/sodium alginate hydrogel containing a nanostructured lipid carrier in which simvastatin has been encapsulated. This dressing aimed to act as a barrier against pathogens, eliminate excess exudates, and accelerate wound healing by increasing the production of vascular endothelial growth factor (VEGF). Among various fabricated composites of dressing, the hydrogel composite with a carboxymethyl chitosan/sodium alginate ratio of 1:2 had an average pore size of about 98.44 ± 26.9 μm and showed 707 ± 31.9 % swelling and a 2116 ± 79.2 g/m2.per day water vapor transfer rate (WVTR), demonstrating appropriate properties for absorbing exudates and maintaining wound moisture. The nanostructured lipid carrier with optimum composition and properties had a spherical shape and uniform particle size distribution (74.46 ±7.9 nm). The prepared nanocomposite hydrogel displayed excellent antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria as well as high biocompatibility on L929 mouse fibroblast cells. It can release the loaded simvastatin drug slowly and over a prolonged period of time. The highest drug release occurred (80%) within 14 days. The results showed that this novel nanocomposite could be a promising candidate as a wound dressing for treating various chronic wounds in skin tissues.