Breast cancer (BCa) poses a severe threat to women’s health worldwide as it is the most frequently diagnosed type of cancer and the primary cause of death for female patients. The biopsy procedure remains the gold standard for accurate and effective diagnosis of BCa. However, its adverse effects, such as invasiveness, bleeding, infection, and reporting time, keep this procedure as a last resort for diagnosis. A mammogram is considered the routine noninvasive imaging-based procedure for diagnosing BCa, mitigating the need for biopsies; however, it might be prone to subjectivity depending on the radiologist’s experience. Therefore, we propose a novel, mammogram image-based BCa explainable AI (BCaXAI) model with a deep learning-based framework for precise, noninvasive, objective, and timely manner diagnosis of BCa. The proposed BCaXAI leverages the Inception-ResNet V2 architecture, where the integration of explainable AI components, such as Grad-CAM, provides radiologists with valuable visual insights into the model’s decision-making process, fostering trust and confidence in the AI-based system. Based on using the DDSM and CBIS-DDSM mammogram datasets, BCaXAI achieved exceptional performance, surpassing traditional models such as ResNet50 and VGG16. The model demonstrated superior accuracy (98.53%), recall (98.53%), precision (98.40%), F1-score (98.43%), and AUROC (0.9933), highlighting its effectiveness in distinguishing between benign and malignant cases. These promising results could alleviate the diagnostic subjectivity that might arise as a result of the experience-variability between different radiologists, as well as minimize the need for repetitive biopsy procedures.