Nitrate (NO3) pollution in groundwater, caused by various factors both natural and synthetic, contributes to the decline of human health and well-being. Current techniques used for nitrate detection include spectroscopic, electrochemical, chromatography, and capillary electrophoresis. It is highly desired to develop a simple cost-effective alternative to these complex methods for nitrate detection. Therefore, a real-time poly (3,4-ethylenedioxythiophene) (PEDOT)-based sensor for nitrate ion detection via electrical property change is introduced in this study. Vapor phase polymerization (VPP) is used to create a polymer thin film. Variations in specific parameters during the process are tested and compared to develop new insights into PEDOT sensitivity towards nitrate ions. Through this study, the optimal fabrication parameters that produce a sensor with the highest sensitivity toward nitrate ions are determined. With the optimized parameters, the electrical resistance response of the sensor to 1000 ppm nitrate solution is 41.79%. Furthermore, the sensors can detect nitrate ranging from 1 ppm to 1000 ppm. The proposed sensor demonstrates excellent potential to detect the overabundance of nitrate ions in aqueous solutions in real time.