Since the early 1990s, US Forest Service researchers have made thousands of bedload measurements in steep, coarse-grained channels in Colorado and Wyoming, USA. In this paper we use data from 19 of those sites to characterize patterns and rates of coarse sediment transport for a range of channel types and sizes, including step-pool, plane-bed, pool-riffle, and near-braided channels. This effort builds upon previous work where we applied a piecewise regression model to (1) relate flow to rates of bedload transport and (2) define phases of transport in coarse-grained channels. Earlier, the model was tested using bedload data from eight sites on the Fraser Experimental Forest near Fraser, Colorado. The analysis showed good application to those data and to data from four supplementary channels to which the procedure was applied. The earlier results were, however, derived from data collected at sites that, for the most part, have quite similar geology and runoff regimes. In this paper we evaluate further the application of piecewise regression to data from channels with a wider range of geomorphic conditions. The results corroborate with those from the earlier work in that there is a relatively narrow range of discharges at which a substantial change in the nature of bedload transport occurs. The transition from primarily low rates of sand transport (phase I) to higher rates of sand and coarse gravel transport (phase II) occurs, on average, at about 80 per cent of the bankfull (1·5-year return interval) discharge. A comparison of grain sizes moved during the two phases showed that coarse gravel is rarely trapped in the samplers during phase I transport. Moreover, the movement and capture of the D 16 to D 25 grain size of the bed surface seems to correspond with the onset of phase II transport, particularly in systems with largely static channel surfaces. However, while there were many similarities in observed patterns of bedload transport at the 19 studied sites, each had its own 'bedload signal' in that the rate and size of materials transported largely reflected the nature of flow and sediment particular to that system. Published in 2005 by John Wiley & Sons, Ltd.