The 11 March 2011 tsunami was probably the fourth largest in the past 100 years and killed over 15 000 people. The magnitude of the design tsunami triggering earthquake affecting this region of Japan had been grossly underestimated, and the tsunami hit the Fukushima Dai-ichi nuclear power plant (NPP), causing the third most severe accident in an NPP ever. Interestingly, while the Onagawa NPP was also hit by a tsunami of approximately the same height as Dai-ichi, it survived the event ‘remarkably undamaged’. We explain what has been referred to as the cascade of engineering and regulatory failures that led to the Fukushima disaster. One, insufficient attention had been given to evidence of large tsunamis inundating the region earlier, to Japanese research suggestive that large earthquakes could occur anywhere along a subduction zone, and to new research on mega-thrusts since Boxing Day 2004. Two, there were unexplainably different design conditions for NPPs at close distances from each other. Three, the hazard analysis to calculate the maximum probable tsunami at Dai-ichi appeared to have had methodological mistakes, which almost nobody experienced in tsunami engineering would have made. Four, there were substantial inadequacies in the Japan nuclear regulatory structure. The Fukushima accident was preventable, if international best practices and standards had been followed, if there had been international reviews, and had common sense prevailed in the interpretation of pre-existing geological and hydrodynamic findings. Formal standards are needed for evaluating the tsunami vulnerability of NPPs, for specific training of engineers and scientists who perform tsunami computations for emergency preparedness or critical facilities, as well as for regulators who review safety studies.