Dual-domain one-way propagators implement wave propagation in heterogeneous media in mixed domains (space-wavenumber domains). One-way propagators neglect wave reverberations between heterogeneities but correctly handle the forward multiple-scattering including focusing/defocusing, diffraction, refraction and interference of waves. The algorithm shuttles between space-domain and wavenumber-domain using FFT, and the operations in the two domains are self-adaptive to the complexity of the media. The method makes the best use of the operations in each domain, resulting in efficient and accurate propagators. Due to recent progress, new versions of dual-domain methods overcame some limitations of the classical dual-domain methods (phase-screen or split-step Fourier methods) and can propagate large-angle waves quite accurately in media with strong velocity contrasts. These methods can deliver superior image quality (high resolution/high fidelity) for complex subsurface structures. One-way and one-return (De Wolf approximation) propagators can be also applied to wave-field modeling and simulations for some geophysical problems. In the article, a historical review and theoretical analysis of the Born, Rytov, and De Wolf approximations are given. A review on classical phase-screen or split-step Fourier methods is also given, followed by a summary and analysis of the new dual-domain propagators. The applications of the new propagators to seismic imaging and modeling are reviewed with several examples. For seismic imaging, the advantages and limitations of the traditional Kirchhoff migration and time-space domain finite-difference migration, when applied to 3-D complicated structures, are first analyzed. Then the special features, and applications of the new dual-domain methods are presented. Three versions of GSP (generalized screen propagators), the hybrid pseudo-screen, the wide-angle Pade´-screen, and the higherorder generalized screen propagators are discussed. Recent progress also makes it possible to use the dualdomain propagators for modeling elastic reflections for complex structures and long-range propagations of crustal guided waves. Examples of 2-D and 3-D imaging and modeling using GSP methods are given.