Given the intricate, multifaceted nature of financial data in e-commerce enterprises, this article presents a T-DPC algorithm for analyzing financial management in these businesses. The algorithm utilizes the t-SNE method to reduce the dimensionality of financial data, whilst also implementing an enhanced DPC algorithm based on the K-nearest neighbor concept to analyze financial data clusters. The results show that the F-measure metrics of the DPC algorithm optimized by t-SNE improve 16.7% and 3.07% over the DPC algorithm after testing on the PID and Wine datasets, and its running time is faster than the DPC algorithm on the Aggregation, D31, and R15 datasets by 16.2. Therefore, the algorithm has reference significance for the financial analysis of e-commerce enterprises.