A common feature of many duality results is that the involved equivalence functors are liftings of hom-functors into the two-element space resp. lattice. Due to this fact, we can only expect dualities for categories cogenerated by the two-element set with an appropriate structure. A prime example of such a situation is Stone's duality theorem for Boolean algebras and Boolean spaces, the latter being precisely those compact Hausdorff spaces which are cogenerated by the two-element discrete space. In this paper we aim for a systematic way of extending this duality theorem to categories including all compact Hausdorff spaces. To achieve this goal, we combine duality theory and quantaleenriched category theory. Our main idea is that, when passing from the two-element discrete space to a cogenerator of the category of compact Hausdorff spaces, all other involved structures should be substituted by corresponding enriched versions. Accordingly, we work with the unit interval [0, 1] and present duality theory for ordered and metric compact Hausdorff spaces and (suitably defined) finitely cocomplete categories enriched in [0, 1].