14th WCCM-ECCOMAS Congress 2021
DOI: 10.23967/wccm-eccomas.2020.017
|View full text |Cite
|
Sign up to set email alerts
|

A Finite Element Method - Informed Neural Network For Uncertainty Quantification

Abstract: Sampling approaches for uncertainty quantification for real-world engineering problems are associated with large computational time and cost. This cost comes from the expensive deterministic simulation. Usage of surrogate models is a common way to overcome this issue in engineering applications. A conventional Neural Network (NN) can be used for building such surrogates. However, these neural networks are built based on input-output pairs. It is not possible to verify that the predicted output satisfies underl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?