Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background/Objectives: Osteoarthritis is a feature of the aging process. Here, we adopted in silico 2D finite element modeling (FEM) for the simulation of diseased ankle joints. We delved into the influence of body weight intensity on the stress distribution caused by subchondral cysts imitating degenerative age-related arthritic changes. Methods: FEM was performed using virtually generated pictorial schemes of the ankle joint skeletal contour. It included a constellation of scenarios with solitary or multiple cysts, or the lack thereof, located centrally, peripherally, or both in the talus and tibia at increased fixed levels of body weight. Results: The modeling showed that the highest stress was in the presence of a solitary central cyst in the talus and two centrally located cysts in the talus and the tibia, with the averaged values of 1.81 ± 0.52 MPa and 1.92 ± 0.55 MPa, respectively; there was a significant increase compared with the 1.24 ± 0.35 MPa in the control condition without cysts. An increase in body weight consistently increased the strain on the ankle joint. In contrast, peripherally located cysts failed to affect the stress distribution significantly. Conclusions: We conclude that subchondral central cysts substantially enhance the stress exerted on the ankle joint and its vicinity with body weight dependence. FEM’s ability to predict the location and magnitude of subchondral stress changes when confirmed in clinical trials might help to optimize the management of age-related degenerative joint changes.
Background/Objectives: Osteoarthritis is a feature of the aging process. Here, we adopted in silico 2D finite element modeling (FEM) for the simulation of diseased ankle joints. We delved into the influence of body weight intensity on the stress distribution caused by subchondral cysts imitating degenerative age-related arthritic changes. Methods: FEM was performed using virtually generated pictorial schemes of the ankle joint skeletal contour. It included a constellation of scenarios with solitary or multiple cysts, or the lack thereof, located centrally, peripherally, or both in the talus and tibia at increased fixed levels of body weight. Results: The modeling showed that the highest stress was in the presence of a solitary central cyst in the talus and two centrally located cysts in the talus and the tibia, with the averaged values of 1.81 ± 0.52 MPa and 1.92 ± 0.55 MPa, respectively; there was a significant increase compared with the 1.24 ± 0.35 MPa in the control condition without cysts. An increase in body weight consistently increased the strain on the ankle joint. In contrast, peripherally located cysts failed to affect the stress distribution significantly. Conclusions: We conclude that subchondral central cysts substantially enhance the stress exerted on the ankle joint and its vicinity with body weight dependence. FEM’s ability to predict the location and magnitude of subchondral stress changes when confirmed in clinical trials might help to optimize the management of age-related degenerative joint changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.