“…Potential Feature Algorithm Application systems MTP moment tensor 70 linear regression monolayers [77][78][79][80][81][82][83][84]95 , bilayers 85 , heterostructures 20 , perovskites 86 , skutterudites 68,87 , alloys 88 , wurtzite structures 89 , phase change materials 91,92 , complex crystals 93 , etc NNP ACSF 71,72 , digital image 66 , SOAP 18 NN molten salts 21 , polymorphs 103 , near-stoichiometric compounds 106 , high-entropy ceramics 107,108 , ternary salts 109 , nanowires 110 , monolayers 111 , antiperovskites 112 , etc GAP SOAP 18 , two-body and three-body descriptors 117,118 GPR crystalline compounds [113][114][115] , crystals with defects 116 , monolayers 117,118 , amorphous structures 119 , etc Fig. 4 Scheme of active learning bootstrapping iterations for training the Moment Tensor Potential (MTP).…”