As a result of the high-throughput ab initiocalculations, the set of 34 stable and novel half-Heusler phases was revealed. The electronic structure and the elastic, transport, and thermoelectric properties of these systems were carefully investigated, providing some promising candidates for thermoelectric materials. The complementary nature of the research is enhanced by the deformation potential theory applied for the relaxation time of carriers (for power factor, PF) and the Slack formula for the lattice thermal conductivity (for figure of merit, ZT). Moreover, two exchange-correlation parametrizations were used (GGA and MBJGGA), and a complete investigation was provided for both p- and n-type carriers. The distribution of the maximum PF and ZT for optimal doping at 300 K in all systems was disclosed. Some chemical trends in electronic and transport properties were discussed. The results suggest TaFeAs, TaFeSb, VFeAs, and TiRuAs as potentially valuable thermoelectric materials. TaFeAs revealed the highest values of both PF and ZT at 300 K (PFp = 1.67 mW/K2m, ZTp = 0.024, PFn = 2.01 mW/K2m, and ZTp = 0.025). The findings presented in this work encourage further studies on the novel phases, TaFeAs in particular.