Inspired by the biological eye movements of fish such as pipefish and sandlances, this paper presents a novel dynamic calibration method specifically for active stereo vision systems to address the challenges of active cameras with varying fields of view (FOVs). By integrating static calibration based on camera rotation angles with dynamic updates of extrinsic parameters, the method leverages relative pose adjustments between the rotation axis and cameras to update extrinsic parameters continuously in real-time. It facilitates epipolar rectification as the FOV changes, and enables precise disparity computation and accurate depth information acquisition. Based on the dynamic calibration method, we develop a two-DOF bionic active camera system including two cameras driven by motors to mimic the movement of biological eyes; this compact system has a large range of visual data. Experimental results show that the calibration method is effective, and achieves high accuracy in extrinsic parameter calculations during FOV adjustments.