Abstract. Our purpose is to investigate criteria for hyperstability of linear type functional equations. We prove that a function satisfying the equation approximately in some sense, must be a solution of it. We give some conditions on coefficients of the functional equation and a control function which guarantee hyperstability. Moreover, we show how our outcomes may be used to check whether the particular functional equation is hyperstable. Some relevant examples of applications are presented.Mathematics Subject Classification. Primary 39B82, 47H14, 47J20; Secondary 39B62, 47H10.