Early postreceptoral color vision is thought to be organized in terms of two principal axes corresponding to opposing L- and M-cone signals (LvsM) or to S-cone signals opposed by a combination of L- and M-cone signals (SvsLM). These cone-opponent axes are now widely used in studies of color vision, but in most cases the corresponding stimulus variations are defined only theoretically, based on a standard observer. We examined the range and implications of interobserver variations in the cone-opponent axes. We used chromatic adaptation to empirically define the LvsM and SvsLM axes and used both thresholds and color contrast adaptation to determine sensitivity to the axes. We also examined the axis variations implied by individual differences in the color matching data of Stiles and Burch [Opt. Acta 6, 1 (1959)]. The axes estimated for individuals can differ measurably from the nominal standard-observer axes and can influence the interpretation of postreceptoral color organization (e.g., regarding interactions between the two axes). Thus, like luminance sensitivity, individual differences in chromatic sensitivity may be important to consider in studies of the cone-opponent axes.