2006
DOI: 10.1177/0962280206070645
|View full text |Cite
|
Sign up to set email alerts
|

A flexible class of parametric transition regression models based on copulas: application to poliomyelitis incidence

Abstract: This paper presents an extension of a general parametric class of transitional models of order p. In these models, the conditional distribution of the current observation, given the present and past history, is a mixture of conditional distributions, each of them corresponding to the current observation, given each one of the p-lagged observations. Such conditional distributions are constructed using bivariate copula models which allow for a rich range of dependence suitable to model non-Gaussian time series. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
6
0
3

Year Published

2009
2009
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 16 publications
(9 citation statements)
references
References 27 publications
0
6
0
3
Order By: Relevance
“…Following the search process shown in Figure 1, the systematic literature review and addition of other studies by the three GPEI-supported modeling groups led to the extraction of information from 176 included studies [1][2][3][4]. As noted, during review of the full text of the studies identified by the search, we excluded papers that presented statistical analyses that did not include a mechanistic poliovirus transmission model [180][181][182][183][184][185][186][187]. Table 1 summarizes some attributes of the included studies.…”
Section: Resultsmentioning
confidence: 99%
“…Following the search process shown in Figure 1, the systematic literature review and addition of other studies by the three GPEI-supported modeling groups led to the extraction of information from 176 included studies [1][2][3][4]. As noted, during review of the full text of the studies identified by the search, we excluded papers that presented statistical analyses that did not include a mechanistic poliovirus transmission model [180][181][182][183][184][185][186][187]. Table 1 summarizes some attributes of the included studies.…”
Section: Resultsmentioning
confidence: 99%
“…Las cópulas se han convertido en una herramienta popular para la construcción de modelos multivariados en campos donde hay un gran interés por la dependencia multivariada; más específicamente, han sido utilizadas en campos tan variados como en medicina, para modelar el número de casos mensuales de una enfermedad casi erradicada, por ejemplo, la poliomielitis [1]; en ciencias actuariales, para modelar la mortalidad y las pérdidas dependientes [2,3]; en finanzas, para análisis y gestión de riesgos [4,5]; en estudios biomédicos, en el modelado de tiempos de eventos correlacionados y riesgos competitivos [6], y en ingeniería, en el control de procesos multivariados y en el modelado hidrológico [7].…”
Section: Introductionunclassified
“…Ahora bien, al par de números (x, y) se le puede asociar tres números F(x), G(y) y H(x, y), donde cada uno de ellos pertenece al intervalo [0,1], es decir, a cada (x, y) le corresponde un punto (F(x),G(y)) en el espacio producto [ Como se demuestra en [8], esta correspondencia, que asigna el valor de la función de distribución conjunta a cada par ordenado de los valores de las funciones de distribución marginales, es de hecho una función de distribución. Tales funciones son cópu-las [10].…”
Section: Introductionunclassified
See 1 more Smart Citation
“…While not explicitly referring to the regression analysis, in several studies (Leong and Valdez, 2005;Käärik et al, 2011;Mohseni Ahooyi et al, 2014c), similar functions have been derived by calculating the copula conditional independence. A mixture of copulas is used to create more complex non-Gaussian copulas describing the feature-response relationship (Escarela et al, 2006). Constructing the copulas based on the affine generalized hyperbolic distributions is also considered as a way of generating more complicated parametric copulas applicable to the regression models (Schmidt et al, 2006).…”
Section: Introductionmentioning
confidence: 99%