Summary
Star graphs possess many desirable properties such as scalable node degrees and diameters, which are essential to facilitate reduced routing table sizes and low maximum path length for routing in large P2P networks. In addition, because a large number of disjoint paths are available and each data/replica in an n‐star can be placed in an (n − 1)‐star, load balancing and alleviation of network bottlenecks can be implemented in star P2P overlay networks. Therefore, star networks have been proposed as viable alternatives to existing overlay topologies for large P2P networks. In this paper, we propose an optimal stabilizing and inherently stabilizing algorithm for routing messages over all disjoint paths between two peers in a star P2P overlay network. The algorithm is optimal in terms of its time complexity in rounds and the length of the longest path traversed by the messages, and fault tolerant due to being stabilizing and inherently stabilizing, allowing the system to withstand transient faults. The algorithm can be used to increase network reliability and survivability in P2P networks. In addition, the usage of all disjoint paths to route messages between two peers leads to increased network bandwidth while distributing the communication overhead across the network and eliminating network bottlenecks in P2P networks. Copyright © 2016 John Wiley & Sons, Ltd.