Mechanical forces shape physiological structure and function within cell and tissue microenvironments, during which cells strive to restore their shape or develop an adaptive mechanism to maintain cell integrity depending on strength and type of the mechanical loading. While some cells are shown to experience permanent plastic deformation after a repetitive mechanical tensile loading and unloading, the impact of such repetitive compression on plastic deformation of cells is yet to be discovered. As such, the ability to apply cyclic compression is crucial for any experimental setup aimed at the study of mechanical compression taking place in cell and tissue microenvironments. Here, the capability of our microfluidic compression platform to aid in the observation of the sequential cyclic compression of live cell actin is illustrated using SKOV-3 ovarian cancer cells. Live imaging of the actin cytoskeleton dynamics of the compressed cells was performed for the applied varying pressures in ascending order during cell compression. Additionally, recovery of the compressed cells was investigated by capturing actin cytoskeleton and nuclei profiles of the cells at zero time and 24 h-recovery after compression in end point assays. This was performed for a range of mild pressures within the physiological range. The extent of recovery of the compressed cells can give insights into the plasticity of the cancer cells by imaging cell membrane bulges and actin cytoskeleton and measuring the shape descriptors of cell nuclei. As demonstrated in this work, the developed platform can control the strength and duration of cyclic compression, while enabling the observation of morphological and cytoskeletal and nuclear changes in cells, thus providing a powerful new tool for the study of mechanobiological processes in cancer and cell biology.