2022
DOI: 10.1214/21-aoas1530
|View full text |Cite
|
Sign up to set email alerts
|

A flexible sensitivity analysis approach for unmeasured confounding with multiple treatments and a binary outcome with application to SEER-Medicare lung cancer data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
22
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 11 publications
(22 citation statements)
references
References 41 publications
0
22
0
Order By: Relevance
“…For notational brevity, we suppress the ik$$ ik $$ subscript denoting individual. Following Brumback et al 35 and Hu et al, 12 we first define the confounding function for any pair of treatments false(aj,ajfalse)$$ \left({a}_j,{a}_{j^{\prime }}\right) $$ as cfalse(aj,aj,bold-italicx,vfalse)=E[]logTfalse(ajfalse) false| A=aj,bold-italicX=bold-italicx,V=vprefix−E[]logTfalse(ajfalse) false| A=aj,bold-italicX=bold-italicx,V=v.$$ c\left({a}_j,{a}_{j^{\prime }},\boldsymbol{x},v\right)=E\left[\log T\left({a}_j\right)\;|\;A={a}_j,\boldsymbol{X}=\boldsymbol{x},V=v\right]-E\left[\log T\left({a}_j\right)\;|\;A={a}_{j^{\prime }},\boldsymbol{X}=\boldsymbol{x},V=v\right]. $$ This confounding function directly represents the difference in the mean potential log survival times under treatment aj$$ {a}_j $$ between those treated with aj$$ {a}_j $$ and those treated with aj$$ {a}_{j^{\prime }} $$, who have the same level of bold-italicx$$ \boldsymbol{x} $$.…”
Section: Sensitivity Analysismentioning
confidence: 99%
See 4 more Smart Citations
“…For notational brevity, we suppress the ik$$ ik $$ subscript denoting individual. Following Brumback et al 35 and Hu et al, 12 we first define the confounding function for any pair of treatments false(aj,ajfalse)$$ \left({a}_j,{a}_{j^{\prime }}\right) $$ as cfalse(aj,aj,bold-italicx,vfalse)=E[]logTfalse(ajfalse) false| A=aj,bold-italicX=bold-italicx,V=vprefix−E[]logTfalse(ajfalse) false| A=aj,bold-italicX=bold-italicx,V=v.$$ c\left({a}_j,{a}_{j^{\prime }},\boldsymbol{x},v\right)=E\left[\log T\left({a}_j\right)\;|\;A={a}_j,\boldsymbol{X}=\boldsymbol{x},V=v\right]-E\left[\log T\left({a}_j\right)\;|\;A={a}_{j^{\prime }},\boldsymbol{X}=\boldsymbol{x},V=v\right]. $$ This confounding function directly represents the difference in the mean potential log survival times under treatment aj$$ {a}_j $$ between those treated with aj$$ {a}_j $$ and those treated with aj$$ {a}_{j^{\prime }} $$, who have the same level of bold-italicx$$ \boldsymbol{x} $$.…”
Section: Sensitivity Analysismentioning
confidence: 99%
“…For notational brevity, we suppress the ik subscript denoting individual. Following Brumback et al 35 and Hu et al, 12 we first define the confounding function for any pair of treatments (a j , a j ′ ) as…”
Section: Confounding Function Adjusted Treatment Effect Estimatesmentioning
confidence: 99%
See 3 more Smart Citations