Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents the design, proof-of-concept implementation, and preliminary performance assessment of an affordable real-time High-Sensitivity (HS) Global Navigation Satellite System (GNSS) receiver. Specifically tailored to capture and track weak Galileo E1b/c signals, this receiver aims to support research endeavors focused on advancing GNSS signal processing algorithms, particularly in scenarios characterized by pronounced signal attenuation. Leveraging System-on-Chip Field-Programmable Gate Array (SoC-FPGA) technology, this design merges the adaptability of Software Defined Radio (SDR) concepts with the the robust hardware processing capabilities of FPGAs. This innovative approach enhances power efficiency compared to conventional designs relying on general-purpose processors, thereby facilitating the development of embedded software-defined receivers. Within this architecture, we implemented a modular GNSS baseband processing engine, offering a versatile platform for the integration of novel algorithms. The proposed receiver undergoes testing with live signals, showcasing its capability to process GNSS signals even in challenging scenarios with a carrier-to-noise density ratio (C/N0) as low as 20 dB-Hz, while delivering navigation solutions. This work contributes to the advancement of low-cost, high-sensitivity GNSS receivers, providing a valuable tool for researchers engaged in the development, testing, and validation of experimental GNSS signal processing techniques.
This paper presents the design, proof-of-concept implementation, and preliminary performance assessment of an affordable real-time High-Sensitivity (HS) Global Navigation Satellite System (GNSS) receiver. Specifically tailored to capture and track weak Galileo E1b/c signals, this receiver aims to support research endeavors focused on advancing GNSS signal processing algorithms, particularly in scenarios characterized by pronounced signal attenuation. Leveraging System-on-Chip Field-Programmable Gate Array (SoC-FPGA) technology, this design merges the adaptability of Software Defined Radio (SDR) concepts with the the robust hardware processing capabilities of FPGAs. This innovative approach enhances power efficiency compared to conventional designs relying on general-purpose processors, thereby facilitating the development of embedded software-defined receivers. Within this architecture, we implemented a modular GNSS baseband processing engine, offering a versatile platform for the integration of novel algorithms. The proposed receiver undergoes testing with live signals, showcasing its capability to process GNSS signals even in challenging scenarios with a carrier-to-noise density ratio (C/N0) as low as 20 dB-Hz, while delivering navigation solutions. This work contributes to the advancement of low-cost, high-sensitivity GNSS receivers, providing a valuable tool for researchers engaged in the development, testing, and validation of experimental GNSS signal processing techniques.
With the increasing demand for accurate and robust positioning solutions, the use of GNSS antenna arrays has gained significant attention. However, their development and testing are frequently constrained by the inflexibility of traditional hardware platforms, often requiring extensive reconfiguration throughout the development cycle. This paper presents a platform based on a system on chip to develop a highly flexible software-controlled system that is capable of directly sampling up to 16 antenna elements. Multibeam digital beamforming is implemented using the available FPGA resources and the resulting signal is reproduced by the integrated DAC and can be connected to any conventional single antenna GNSS receiver. This paper presents the architecture of the platform, detailing its components and capabilities. Our experimental results demonstrate that the system can phase shift every channel with errors of less than 0.5° and can reconfigure 4 simultaneous beams of a 16-antenna array at speeds of 1.2 kHz, and 20 beams at around 400 Hz. The average delay introduced by each channel of the system is around 381 ns with a maximum deviation of 1.05 ns. The delay was also measured for the implementation using 4 beams, which achieves a slightly bigger average delay of 384.6 ns while keeping the variation to 5 to 6 ns. This system is intended to be used as the backbone for the development of antenna arrays and beamforming algorithms. Given its flexibility, it is not necessary to develop new hardware between development iterations or even for different systems, as only the software layer needs to be modified. Consequently, it is possible to expedite the development stage before producing dedicated solutions for industrial applications.
(English) The rapid evolution in satellite navigation technology (GNSS) requires advanced prototyping tools for exploring new signals and developing innovative systems. Prototyping is essential in the design and development process, as it allows researchers to test and refine their ideas before implementing them on a large scale. Prototyping using commercial GNSS receivers poses several challenges. Currently, these receivers are primarily based on application-specific integrated circuits (ASICs), which are characterized by low power consumption, compact dimensions, and low cost, but offer limited flexibility. Although some commercial devices incorporate software-defined radio (SDR) techniques, they often contain proprietary code that restricts reconfiguration through an application programming interface (API) established by the manufacturer. GNSS receivers based on free and open-source software have become very valuable resources in the field of research and development, especially in satellite navigation. These receivers are highly valued for their adaptability and flexibility, allowing researchers to tailor the software to specific experimental needs or develop new signal processing algorithms. However, software-defined receivers tend to be less energy-efficient compared to hardware-based receivers, as they operate on general-purpose processors, which are not optimized for low power consumption. This thesis focuses on the design and development of a low-cost architecture for prototyping experimental GNSS receivers, based on System-on-Chip Field Programmable Gate Arrays (SoC FPGAs). This architecture overcomes the limitations of commercial GNSS receivers in terms of adaptability, flexibility, and reprogramming capacity, and offers improved energy efficiency compared to software-based receivers that rely on general-purpose processors. The strategy consists of combining the versatility of software-defined radio with the intensive parallelism and optimized energy consumption of programmable logic devices, providing the best of both worlds. This fusion allows the development of compact, portable GNSS receivers, thus facilitating the prototyping of embedded devices suitable for field testing. In addition, the GNSS processing core is based on a free and open-source software implementation, which provides detailed access to the signal processing chain and allows unrestricted exploration and modification of the algorithms used. This thesis also presents a design methodology for the development of new prototypes and new GNSS signal processing algorithms based on the proposed SoC FPGA architecture. This methodology places special emphasis on code reuse, a key aspect for reducing development costs and time. The practical applications of this architecture have been demonstrated through three prototypes: a GNSS receiver for low Earth orbit (LEO), a GNSS signal repeater, and a high-sensitivity GNSS receiver. The innovative approach presented in this thesis facilitates the development of experimental prototypes of flexible and portable GNSS receivers and signal generators, suitable for both laboratory experiments and field testing. (Català) La ràpida evolució en la tecnologia de navegació per satèl·lit (GNSS) requereix eines de prototipatge avançades per a l'exploració de nous senyals i el desenvolupament de sistemes innovadors. El prototipatge és essencial en el procés de disseny i desenvolupament, ja que permet als investigadors provar i perfeccionar les seves idees abans de dur a terme una implementació a gran escala. El prototipatge utilitzant receptors GNSS comercials planteja diversos reptes. En l'actualitat, aquests receptors es basen majoritàriament en circuits integrats d'aplicació específica (ASICs), els quals es caracteritzen per un consum energètic reduït, dimensions compactes i un cost baix, però ofereixen una flexibilitat limitada. Tot i que alguns dispositius comercials incorporen tècniques de ràdio definida per programari (SDR), aquests freqüentment contenen codi propietari que en restringeix la reconfiguració mitjançant una interfície de programació d'aplicacions (API) establerta pel fabricant. Els receptors GNSS basats en programari lliure i codi obert han esdevingut recursos molt valuosos en el camp de la recerca i desenvolupament, especialment en el camp de la navegació per satèl·lit. Aquests receptors són molt valorats per la seva adaptabilitat i flexibilitat, permetent als investigadors adaptar el programari a necessitats experimentals específiques o desenvolupar nous algoritmes de processament de senyal. Tanmateix, els receptors definits per programari solen ser menys eficients energèticament en comparació amb els receptors basats en maquinari, ja que operen en processadors de propòsit general, que no estan optimitzats per a un baix consum energètic. Aquesta tesi se centra en el disseny i desenvolupament d'una arquitectura de baix cost per al prototipatge de receptors GNSS experimentals, basada en sistemes en un xip amb matrius de portes lògiques programables in situ (SoC FPGA). Aquesta arquitectura supera les limitacions dels receptors GNSS comercials en termes d'adaptabilitat, flexibilitat i capacitat de reprogramació, i ofereix una eficiència energètica millorada en comparació amb els receptors basats en programari que depenen de processadors de propòsit general. L'estratègia consisteix a combinar la versatilitat de la ràdio definida per programari amb el paral·lelisme intensiu i el consum energètic optimitzat dels dispositius lògics programables, proporcionant el millor de tots dos mons. Aquesta fusió permet el desenvolupament de receptors GNSS compactes, portàtils, facilitant així el prototipatge de dispositius encastats adequats per a proves de camp. A més, el nucli de processament GNSS es basa en una implementació de programari lliure i obert, que proporciona un accés detallat a la cadena de processament de senyal i permet una exploració i modificació sense restriccions dels algoritmes utilitzats. Aquesta tesi també presenta una metodologia de disseny per al desenvolupament de nous prototips i nous algoritmes de processament de senyal GNSS basats en l'arquitectura SoC FPGA que es proposa. Aquesta metodologia posa especial èmfasi en la reutilització de codi, aspecte clau per a reduir els costos i temps de desenvolupament. Les aplicacions pràctiques d'aquesta arquitectura s'han demostrat a través de tres prototips: un receptor GNSS per a òrbita baixa terrestre (LEO), un retransmissor de senyals GNSS, i un receptor GNSS d'alta sensibilitat. L'enfocament innovador presentat en aquesta tesi facilita al desenvolupament de prototips experimentals de receptors i generadors de senyals GNSS flexibles i portàtils, aptes tant per a experiments de laboratori com per a proves de camp. (Español) La rápida evolución en la tecnología de navegación por satélite (GNSS) requiere herramientas avanzadas de prototipado para explorar nuevas señales y desarrollar sistemas innovadores. El prototipado es esencial en el proceso de diseño y desarrollo, ya que permite a los investigadores probar y refinar sus ideas antes de implementarlas a gran escala. El prototipado utilizando receptores GNSS comerciales plantea varios desafíos. Actualmente, estos receptores se basan principalmente en circuitos integrados de aplicación específica (ASICs), los cuales se caracterizan por su bajo consumo de energía, dimensiones compactas y bajo coste, pero ofrecen flexibilidad limitada. Aunque algunos dispositivos comerciales incorporan técnicas de radio definida por software (SDR), a menudo contienen código propietario que restringe la reconfiguración a través de una interfaz de programación de aplicaciones (API) establecida por el fabricante. Los receptores GNSS basados en software libre y de código abierto se han convertido en recursos muy valiosos en el campo de la investigación y desarrollo, especialmente en la navegación por satélite. Estos receptores son muy valorados por su adaptabilidad y flexibilidad, lo que permite a los investigadores adaptar el software para necesidades experimentales específicas o desarrollar nuevos algoritmos de procesado de señales. Sin embargo, los receptores definidos por software tienden a ser menos eficientes en términos de energía en comparación con los receptores basados en hardware, ya que operan en procesadores de propósito general, los cuales no están optimizados para el bajo consumo de energía. Esta tesis se enfoca en el diseño y desarrollo de una arquitectura de bajo coste para el prototipado de receptores GNSS experimentales, basada en sistemas en un chip con matrices de puertas programables en campo (SoC FPGAs). Esta arquitectura supera las limitaciones de los receptores GNSS comerciales en términos de adaptabilidad, flexibilidad y capacidad de reprogramación, y ofrece una eficiencia energética mejorada en comparación con los receptores basados en software que dependen de procesadores de propósito general. La estrategia consiste en combinar la versatilidad de la radio definida por software con el paralelismo intensivo y el consumo de energía optimizado de los dispositivos lógicos programables, proporcionando lo mejor de ambos mundos. Esta fusión permite el desarrollo de receptores GNSS compactos y portátiles, facilitando así el prototipado de dispositivos embebidos adecuados para pruebas de campo. Además, el núcleo de procesado GNSS se basa en una implementación de software libre y de código abierto, lo que proporciona acceso detallado a la cadena de procesamiento de señales y permite la exploración y modificación sin restricciones de los algoritmos utilizados. Esta tesis también presenta una metodología de diseño para el desarrollo de nuevos prototipos y nuevos algoritmos de procesado de señales GNSS basados en la arquitectura SoC FPGA propuesta. Esta metodología pone especial énfasis en la reutilización de código, un aspecto clave para reducir los costes y tiempos de desarrollo. Las aplicaciones prácticas de esta arquitectura se han demostrado a través de tres prototipos: un receptor GNSS para órbita terrestre baja (LEO), un regenerador de señales GNSS y un receptor GNSS de alta sensibilidad. El enfoque innovador presentado en esta tesis facilita el desarrollo de prototipos experimentales de receptores y generadores de señales GNSS flexibles y portátiles, adecuados tanto para experimentos de laboratorio como para pruebas de campo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.