Abstract. Capsaicin has multiple pharmacological activities including antioxidant, anticancer, and antiinflammatory activities. However, its clinical application is limited due to its poor aqueous solubility, gastric irritation, and low oral bioavailability. This research was aimed at preparing sustained-release matrix pellets of capsaicin to enhance its oral bioavailability. The pellets comprised of a core of soliddispersed capsaicin mixed with microcrystalline cellulose (MCC) and hydroxypropyl cellulose (HPMC) and subsequently coating with ethyl cellulose (EC) were obtained by using the technology of extrusion/ spheronization. The physicochemical properties of the pellets were evaluated through scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD). Besides, the in vitro release, in vivo absorption, and in vitro-in vivo correlation were also assessed. More importantly, the relative bioavailability of the sustained-release matrix pellets was studied in fasted rabbits after oral administration using free capsaicin and solid dispersion as references. The oral bioavailability of the matrix pellets and sustained-release matrix pellets of capsaicin was improved approximately 1.98-fold and 5.34-fold, respectively, compared with the free capsaicin. A good level A IVIVC (in vitro-in vivo correlation) was established between the in vitro dissolution and the in vivo absorption of sustainedrelease matrix pellets. All the results affirmed the remarkable improvement in the oral bioavailability of capsaicin owing to the successful preparation of its sustained-release matrix pellets.