Distance-based stochastic techniques have recently emerged in the context of ensemble modeling, in particular for history matching, model selection and uncertainty quantification. Starting with an initial ensemble of realizations, a distance between any two models is defined. This distance is defined such that the objective of the study is incorporated into the geological modeling process, thereby potentially enhancing the efficacy of the overall workflow. If the intent is to create new models that are constrained to dynamic data (history matching), the calculation of the distance requires flow simulation for each model in the initial ensemble. This can be very time consuming, especially for high-resolution models. In this paper, we present a multi-resolution framework for ensemble modeling. A distance-based procedure is employed, with emphasis on the rapid construction of multiple models that have improved dynamic data conditioning. Our intent is to construct new high-resolution models constrained to dynamic data, while performing most of the flow simulations only on upscaled models. An error modeling procedure is introduced into the distance calculations to account for potential errors in the upscaling. Based on a few fine-scale flow simulations, the upscaling error is estimated for each model using a clustering technique. We demonstrate the efficiency of the method on two examples, one where the upscaling error is small, and another where the upscaling error is significant. Results show that the error modeling procedure can accurately capture the error in upscaling, and can thus reproduce the fine-scale flow behavior from coarse-scale simulations with sufficient accuracy (in terms of uncertainty predictions). As a consequence, an ensemble of high-resolution models, which are constrained to dynamic data, can be obtained, but with a minimum of flow simulations at the fine scale.