This work presents description and comparison of internal and state variable models of flow stress in varying processing conditions. Three models were analyzed. The first one is based on dislocation theory and describing the mechanical behavior of f.c.c. polycrystalline structures. The second and third models are standard and modified Sellars' flow stress models. Models were adapted for two commercial codes based on finite element method: QForm7 and Forge 2005. The compression test of 45 grade steel with instant changes of strain rate was simulated. Calculated compression force and flow stress were compared with the experimental data from plastometric tests. The forging process was simulated by QForm7. Results obtained by both internal and modified Sellars' models confirm their high accuracy for analysis and prediction of the flow stress under the varying deformation conditions.