Antimony is widely acknowledged as a critical raw material of worldwide significance, based on its recognition by many countries. According to current projections, there is an anticipated increase in the demand for antimony in the forthcoming years. An issue of significant concern within the supply chain, which poses a substantial obstacle to sustainable development, is the global unequal allocation of abundant antimony resources. Most nations exhibited a high degree of dependence on a few countries for their net imports of antimony, resulting in a notable disruption and raising concerns regarding the supply chain. In most countries, antimony exploration and exploitation have been paused for a long period due to financial constraints associated with operations and environmental concerns. Nowadays, identifying additional antimony reserves, particularly in countries that heavily rely on new technologies and use significant amounts of antimony, is imperative and presents a pressing endeavor. Greece is recognized as one of the European Union member states with identified antimony deposits and a historical record of antimony exploitation. A thorough description, examination, and re-assessment of all existing data on the deposits and occurrences of antimony in Greece is presented. Most of Greece’s antimony deposits are related to hydrothermal processes, controlled by specific tectonic structures, and associated with Cenozoic magmatism. They are classified either as simple Sb-deposits, where the primary ore is a stibnite mineral, or complex polymetallic deposits with varying contents that include antimony minerals.