In recent times, gas foil bearings have become popular for commercial use in the aircraft and space industry, turbocompressors, turbine generators and in the more complex fields of turbochargers and turboexpanders. The gain in popularity for gas foil bearings is due to their features such as contamination-free zone, wide temperature range, higher stability and higher reliability characteristics as compared to other types of bearings. However, several challenges have come across while analysing the gas foil bearing behaviour at different working conditions. The current paper presents an overview of the work done in the past few decades for developing numerical models and listing the efforts of several researchers around the world to conduct the experimental investigation for predicting and analysing thermohydrodynamic behaviour of gas foil bearings at different operating conditions. It is expected that the current paper will help readers to thoroughly understand the hydrodynamic and thermal aspects of gas foil bearings.