“…The most traditional techniques for the detection of heavy metal ions are high performance liquid chromatography (HPLC) coupled with electrochemical-or UV-Vis-detectors, atomic absorption spectroscopy (AAS), inductively coupled plasma mass spectroscopy (ICP-MS), electrothermal atomic absorption spectrometry, flame atomic absorption spectrometry, wet chemical methods such as colorimetry, titrimetry, and gravimetry, and electrochemical techniques [19][20][21][22][23][24][25][26][27][28]. Despite the high accuracy and sensitivity reached in these methods, most of them require expensive, complex, and sophisticated equipment that needs trained staff, making them difficult to use in on-site measurements for portable and easy-to-use detection [19,26,29,30].In this context, electrochemical methods are preferable due to their high sensitivity, fast response, low power cost, simpler approach, and ease of adaptability in order to be integrated into portable, disposable devices for the in-situ multi-element analysis of heavy metals. Nanomaterials have been used as an interesting strategy to enhance the sensitivity of the sensors due to easy functionalization and high electrochemical activity enabled by the electron-transfer process derived from unique electronic, physical, and chemical properties [31].…”