We present a product of pairs of pointed Hilbert spaces that, in the context of Bozėjko, Leinert and Speicher's theory of conditionally free probability, plays the role of the reduced free product of pointed Hilbert spaces, and thus gives a unified construction for the natural notions of independence defined by Muraki.We additionally provide important applications of this construction. We prove that, assuming minor restrictions, for any pair of conditionally free algebras there are copies of them that are conditionally free and also free, a property that is frequently assumed (as hypothesis) to prove several results in the literature. Finally, we give a short proof of the linearization property of the c R-transform (the analog of Voiculescu's R-transform in the context of conditionally free probability).