2021
DOI: 10.1155/2021/6641180
|View full text |Cite
|
Sign up to set email alerts
|

A Folded Concave Penalty Regularized Subspace Clustering Method to Integrate Affinity and Clustering

Abstract: Most sparse or low-rank-based subspace clustering methods divide the processes of getting the affinity matrix and the final clustering result into two independent steps. We propose to integrate the affinity matrix and the data labels into a minimization model. Thus, they can interact and promote each other and finally improve clustering performance. Furthermore, the block diagonal structure of the representation matrix is most preferred for subspace clustering. We define a folded concave penalty (FCP) based no… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?