“…The situation that only one field is contained in $\def\reals{{\rm I\!F}}_l$ , i.e., ∣$\def\reals{{\rm I\!F}}_l$ ∣ = 1, is called Single‐field Mutation ; we define single‐field mutation rules as Fun $_{{\rm FieldMutation}}$ ( F i ), which means the set of all anomalous field values mutated from the field F i . The situation that multiple fields are contained in $\def\reals{{\rm I\!F}}_l$ , i.e., ∣$\def\reals{{\rm I\!F}}_l| \geq 2$ , is called Multi‐field Mutation ; we use pairwise algorithm to generate anomalous values for multi‐field mutation [5] and define the function pairwise ($\def\reals{{\rm I\!F}}_l$ , Q ) to represent the set of all anomalous values mutated from the fields set $\def\reals{{\rm I\!F}}_l$ , where, Q = {$q_{F_1},q_{F_2},...,q_{F_n}$ }, here each $q_{F_i}$ is a set of values for field F i ( i = 1,2,…, n ). The results of function pairwise is $V_{\def\reals{{\rm I\!F}}_l}$ = { V $_{{\rm 1}}$ , V $_{{\rm 2}}$ , …V i , … }, where each V i = {$v_{F_1},v_{F_2},...,v_{F_n}$ }, $v_{F_j}$ ∈$q_{F_j}$ ( j = 1,2,…, n ), i.e., V i is a n ‐dimension vector containing values for field F $_{{\rm 1}}$ , F $_{{\rm 2}}$ ,…, F n , respectively.…”