In recent years, autonomous mobile platforms have seen an increase in usage in several applications. One of which is street-sweeping. Although street-sweeping is a necessary process due to health and cleanliness, fleet operations are difficult to plan optimally. Since each vehicle has several constraints (battery, debris, and water), path planning becomes increasingly difficult to perform manually. Additionally, in real-world applications vehicles may become inactive due to a breakdown, which requires real-time scheduling technology to update the paths for the remaining vehicles. In this paper, the fleet street-sweeping problem can be solved using the proposed lower-level and higher-level path generation methods. For the lower level, a Smart Selective Navigator algorithm is proposed, and a modified genetic algorithm is used for the higher-level path planning. A case study was presented for Uchi Park, South Korea, where the proposed methodology was validated. Specifically, results generated from the ideal scenario (all vehicles operating) were compared to the breakdown scenario, where little to no difference in the overall statistics was observed. Additionally, the lower-level path generation could yield solutions with over 94% area coverage.