We compute the expansion of the cohomology class of the permutahedral variety in the basis of Schubert classes. The resulting structure constants aw are expressed as a sum of normalized mixed Eulerian numbers indexed naturally by reduced words of w. The description implies that the aw are positive for all permutations w ∈ Sn of length n − 1, thereby answering a question of Harada, Horiguchi, Masuda and Park. We use the same expression to establish the invariance of aw under taking inverses and conjugation by the longest word, and subsequently establish an intriguing cyclic sum rule for the numbers.We then move toward a deeper combinatorial understanding for the aw by exploiting in addition the relation to Postnikov's divided symmetrization. Finally, we are able to give a combinatorial interpretation for aw when w is vexillary, in terms of certain tableau descents. It is based in part on a relation between the numbers aw and principal specializations of Schubert polynomials.Along the way, we prove results and raise questions of independent interest about the combinatorics of permutations, Schubert polynomials and related objects.