Cyclization of deproteinized natural rubber (DPNR) or purified natural rubber latex was effectively performed in latex phase by using trimethylsilyl-trifluoromethane sulfonate or trimethylsilyl triflate (TMSOTF) as a novel catalyst, which is still not reported in the case of natural rubber latex. Various cyclization conditions affecting the degree of cyclization were studied, such as dry rubber contents, temperature, TMSOTF concentrations, and time. The cyclized products were characterized by FTIR, Raman, 1 H-, and 13 C-NMR spectroscopies, as well as DSC and TGA. The degree of cyclization was estimated by 1 H-NMR spectrum. It was found that the degree of cyclization in NR was a function of cyclization conditions. The thermal stability of cyclized DPNR increased with the degree of cyclization. Solubility of the obtained rubber was good in chloroform, toluene, cyclohexanone, and cyclohexane, and bad in tetrahydrofuran. The average number molecular weight of cyclized DPNR with 76% degree of cyclization was about 4.2 Â 10 4 g/mol. On the basis of FTIR, Raman, 1 H-, and 13 C-NMR, the C¼ ¼C of cyclized DPNR dramatically decreased after prolonged reaction time. In addition, the topology of cyclization DPNR particles was rough on its rubber particle as analyzed by TEM. The mechanism for this reaction will also be discussed.