2021
DOI: 10.48550/arxiv.2103.13430
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Framework for 3D Tracking of Frontal Dynamic Objects in Autonomous Cars

Abstract: Both recognition and 3D tracking of frontal dynamic objects are crucial problems in an autonomous vehicle, while depth estimation as an essential issue becomes a challenging problem using a monocular camera. Since both camera and objects are moving, the issue can be formed as a structure from motion (SFM) problem. In this paper, to elicit features from an image, the YOLOv3 approach is utilized beside an OpenCV tracker. Subsequently, to obtain the lateral and longitudinal distances, a nonlinear SFM model is con… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?