2015
DOI: 10.1007/978-3-319-25261-2_11
|View full text |Cite
|
Sign up to set email alerts
|

A Framework for Interestingness Measures for Association Rules with Discrete and Continuous Attributes Based on Statistical Validity

Abstract: Assessing rules with interestingness measures is the pillar of successful application of association rules discovery. However, association rules discovered are large in number, some of which are not considered as interesting or significant for the application at hand. In this paper, we present a systematic approach to ascertain the discovered rules, and provide a precise statistical approach supporting this framework. Furthermore, considering that many interestingness measures exist, we propose and compare two… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?