Purpose
To assess possible differences in radiation-induced lymphocyte depletion for esophageal cancer patients being treated with the following 3 treatment modalities: intensity-modulated radiation therapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT).
Methods and Materials
We used 2 prediction models to estimate lymphocyte depletion based on dose distributions. Model I used a piecewise linear relationship between lymphocyte survival and voxel-by-voxel dose. Model II assumes that lymphocytes deplete exponentially as a function of total delivered dose. The models can be fitted using the weekly absolute lymphocyte counts measurements collected throughout treatment. We randomly selected 45 esophageal cancer patients treated with IMRT, PSPT, or IMPT at our institution (15 per modality) to demonstrate the fitness of the 2 models. A different group of 10 esophageal cancer patients who had received PSPT were included in this study of in silico simulations of multiple modalities. One IMRT and one IMPT plan were created, using our standards of practice for each modality, as competing plans to the existing PSPT plan for each patient. We fitted the models by PSPT plans used in treatment and predicted absolute lymphocyte counts for IMRT and IMPT plans.
Results
Model validation on each modality group of patients showed good agreement between measured and predicted absolute lymphocyte counts nadirs with mean squared errors from 0.003 to 0.023 among the modalities and models. In the simulation study of IMRT and IMPT on the 10 PSPT patients, the average predicted absolute lymphocyte count (ALC) nadirs were 0.27, 0.35, and 0.37 K/μL after IMRT, PSPT, and IMPT treatments using Model I, respectively, and 0.14, 0.22, and 0.33 K/μL using Model II.
Conclusions
Proton plans carried a lower predicted risk of lymphopenia after the treatment course than did photon plans. Moreover, IMPT plans outperformed PSPT in terms of predicted lymphocyte preservation.