1996
DOI: 10.1090/cbmath/006/01
|View full text |Cite
|
Sign up to set email alerts
|

A framework for research and curriculum development in undergraduate mathematics education

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
160
0
69

Year Published

2003
2003
2022
2022

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 216 publications
(230 citation statements)
references
References 0 publications
1
160
0
69
Order By: Relevance
“…They acknowledged the difficulty in visualizing a horizontal translation in comparison to a vertical one, suggesting that "there is much more involved in visually processing the transformation of f(x) to f(x + k) than in visually processing the transformation of f to f(x) + k" (p. 58). Baker, Hemenway, and Trigueros (2000) have investigated the understanding of transformations of various functions from a perspective of Action-Process-Object-Schema (APOS) theory (for a description of APOS, see for example, Asiala et al, 1996or Dubinsky & MacDonald, 2001. They confirmed the observation that vertical transformations appear easier for the students than horizontal transformations.…”
Section: Introductionmentioning
confidence: 84%
“…They acknowledged the difficulty in visualizing a horizontal translation in comparison to a vertical one, suggesting that "there is much more involved in visually processing the transformation of f(x) to f(x + k) than in visually processing the transformation of f to f(x) + k" (p. 58). Baker, Hemenway, and Trigueros (2000) have investigated the understanding of transformations of various functions from a perspective of Action-Process-Object-Schema (APOS) theory (for a description of APOS, see for example, Asiala et al, 1996or Dubinsky & MacDonald, 2001. They confirmed the observation that vertical transformations appear easier for the students than horizontal transformations.…”
Section: Introductionmentioning
confidence: 84%
“…Sus fundamentos se basan en la Abstracción Reflexiva formulada por Piaget. Esta teoría ha sido usada y validada para explicar diferentes nociones y/o conceptos matemáticos avanzados, asociados con el nivel universitario; en áreas como cálculo (Valdivia y Parraguez, 2015;Trigueros y Martínez-Planell, 2010), álgebra lineal Salgado y Trigueros, 2015;Parraguez y Oktaç, 2010), álgebra abstracta (Asiala et al, 1996) ecuaciones diferenciales (Trigueros, 2014), fractales (Villabona y Roa-Fuentes, 2016), probabilidad (Vásquez y Parraguez, 2014), teorema del isomorfismo (Mena et al, 2016), entre otros.…”
Section: La Teoría Apoeunclassified
“…En la figura 2, se representa en general cómo la comprensión de un concepto y/o noción matemática inicia cuando un estudiante aplica Acciones sobre Objetos previamente construidos (Arnon et al, 2014;Asiala et al, 1996). Estas relaciones son definidas por Dubinsky (1991) como un "circular feedback system".…”
Section: La Teoría Apoeunclassified
“…Ed Dubinsky and others (Asiala et al, 1996) took an apparently different path, following Piaget's idea of reflective abstraction to focus on operations that are seen first as actions, routinized as processes, then encapsulated as mental objects within knowledge schemas.…”
Section: The Evolution Of Theories Of Mathematical Thinking and Proofmentioning
confidence: 99%