Citation for published item:qllipoliD hF nd qensD eF nd hrmD F nd untD tF @PHHQA 9en elstoEplsti model for unsturted soil inorporting the e'ets of sution nd degree of sturtion on mehnil ehviourF9D q¡ eotehniqueFD SQ @IAF ppF IPQEIQTF Further information on publisher's website: httpXGGwwwFthomstelfordFomGjournlsGstrtFspctournlitleaq¡ eotehniqueertileshaIQITtournlwenuatruetourn Publisher's copyright statement:Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour D. GA LLIPOLI, Ã A . GENS, Ã R. SH ARMA{ and J. VAUNAT Ã The paper presents an elasto-plastic model for unsaturated soils that takes explicitly into account the mechanisms with which suction affects mechanical behaviour as well as their dependence on degree of saturation. The proposed model is formulated in terms of two constitutive variables directly related to these suction mechanisms: the average skeleton stress, which includes the average fluid pressure acting on the soil pores, and an additional scalar constitutive variable, î, related to the magnitude of the bonding effect exerted by meniscus water at the inter-particle contacts. The formulation of the model in terms of variables closely related to specific behaviour mechanisms leads to a remarkable unification of experimental results of tests carried out with different suctions. The analysis of experimental isotropic compression data strongly suggests that the quotient between the void ratio, e, of an unsaturated soil and the void ratio e s , corresponding to the saturated state at the same average soil skeleton stress, is a unique function of the bonding effect due to water menisci at the inter-particle contacts. The same result is obtained when examining critical states at different suctions. Based on these observations, an elastoplastic constitutive model is developed using a single yield surface the size of which is controlled by volumetric hardening. In spite of this simplicity, it is shown that the model reproduces correctly many important features of unsaturated soil behaviour. It is especially remarkable that, although only one yield surface is used in the formulation of the model, the irreversible behaviour in wetting-drying cycles is well captured. Because of the behaviour normalisation achieved by the model, the resulting constitutive law is economical in terms of the number of tests required for parameter determination.KEYWORDS: clays; constitutive rela...