Machine vision technology has gained significant importance in the agricultural industry, particularly in the non-destructive classification and grading of fruits. This paper presents a comprehensive review of the existing literature, highlighting the crucial role of machine vision in automating the fruit quality assessment process. The study encompasses various aspects, including image acquisition techniques, feature extraction methods, and classification algorithms. The analysis reveals the substantial progress made in the field, such as developing sophisticated hardware and software solutions, which have improved accuracy and efficiency in fruit grading. Furthermore, it discusses the challenges and limitations, such as dealing with variability in fruit appearance, handling different fruit types, and real-time processing. The identification of future research needs emphasizes the potential for enhancing machine vision frameworks through the integration of advanced technologies like deep learning and artificial intelligence.Additionally, it underscores the importance of addressing the specific needs of different fruit varieties and exploring the applicability of machine vision in real-world scenarios, such as fruit packaging and logistics. This review underscores the critical role of machine vision in non-destructive fruit classification and grading, with numerous opportunities for further research and innovation. As the agricultural industry continues to evolve, integrating machine vision technologies will be instrumental in improving fruit quality assessment, reducing food waste, and enhancing the overall efficiency of fruit processing and distribution.